fulltext.study @t Gmail

Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
1003 71 2011 9 PDF Available
Title
Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds
Abstract

A key challenge in tissue engineering is overcoming cell death in the scaffold interior due to the limited diffusion of oxygen and nutrients therein. We here hypothesize that immobilizing a gradient of a growth/survival factor from the periphery to the center of a porous scaffold would guide endothelial cells into the interior of the scaffold, thus overcoming a necrotic core. Proteins were immobilized by one of three methods on porous collagen scaffolds for cardiovascular tissue engineering. The proteins were first activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/sulfo N-hydroxysuccinimide and then applied to the scaffold by one of three methods to establish the gradient: perfusion (the flow method), use of a source and a sink (the source–sink method) or by injecting 5 μl of the solution at the center of the scaffold (point source method). Due to the high reproducibility and ease of application of the point source method it was further used for VEGF-165 gradient formation, where an ∼2 ng ml−1 mm−1 gradient was formed in a radial direction across a scaffold, 12 mm in diameter and 2.5 mm thick. More endothelial cells were guided by the VEGF-165 gradient deep into the center of the scaffold compared with both uniformly immobilized VEGF-165 (with the same total VEGF concentration) and VEGF-free controls. All scaffolds (including the controls) yielded the same number of cells, but notably the VEGF-165 gradient scaffolds demonstrated a higher cell density in the centre. Thus we concluded that the VEGF-165 gradient promoted the migration, but not proliferation, of cells into the scaffold. These gradient scaffolds provide the foundation for future in vivo tissue engineering studies.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (284 K)Download as PowerPoint slide

Keywords
Gradient; Vascular endothelial growth factor; Tissue engineering; Collagen; Immobilization
First Page Preview
Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 8, August 2011, Pages 3027–3035
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us