fulltext.study @t Gmail

Dual-role self-assembling nanoplexes for efficient gene transfection and sustained gene delivery

Paper ID Volume ID Publish Year Pages File Format Full-Text
10046 660 2008 11 PDF Available
Title
Dual-role self-assembling nanoplexes for efficient gene transfection and sustained gene delivery
Abstract

Novel cationic pentablock copolymers with poly(diethylamino ethyl methacrylate) blocks covalently attached to parent triblock Pluronic copolymers have been designed and developed as sustained release non-viral gene delivery vectors. These copolymers electrostatically condense plasmid DNA into nanostructures (nanoplexes) and further self-assemble above critical concentration to form thermoreversible hydrogels at physiological temperatures. Unlike other sustained gene delivery systems of non-ionic copolymers that release naked DNA, hydrogels of pentablock copolymer/DNA nanoplexes dissolve in excess buffers to release DNA compacted inside the nanoplexes. These hydrogels permit aqueous pharmaceutical formulations that do not involve organic solvents and are non-invasively injectable with syringes into localized tissues where they instantly form hydrogels in situ. The hydrogels were found to have better mechanical strength than Pluronic gels. Hydrogels of nanoplexes containing 15 wt% copolymer dissolved to release nanoplexes up to 5 days in vitro, compared to rapid release of up to 90% entrapped naked DNA from only Pluronic gels by day 1. The release profile of the nanoplexes from the hydrogels could be modulated by changing the concentration of copolymer or plasmid DNA in the hydrogel formulation. Since DNA is electrostatically bound to copolymer molecules, it does not freely diffuse out of the polymeric network, preventing initial release bursts observed with other such controlled release gels/matrices/microspheres. The released nanoplexes were colloidally stable, preserved the integrity of supercoiled plasmid DNA, and gave good transfection efficiencies in vitro upon dissolution. These novel copolymers, thus, act as both nanoscale gene delivery vectors and macroscale sustained delivery agents, and make a clinically viable long-term sustained gene delivery system.

Keywords
Gene delivery; Controlled release; Non-viral vectors; Hydrogels; Polymer
First Page Preview
Dual-role self-assembling nanoplexes for efficient gene transfection and sustained gene delivery
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 5, February 2008, Pages 607–617
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us