fulltext.study @t Gmail

Substrate architecture and fluid-induced shear stress during chondrocyte seeding: Role of α5β1 integrin

Paper ID Volume ID Publish Year Pages File Format Full-Text
10053 661 2008 13 PDF Available
Title
Substrate architecture and fluid-induced shear stress during chondrocyte seeding: Role of α5β1 integrin
Abstract

Chondrocyte behaviour has been shown previously to be influenced by the architecture of the substrate on which the cells are grown. Chondrocytes cultured on fully porous titanium alloy substrates showed greater spreading and more matrix accumulation when compared to cells grown on porous-coated substrates with solid bases. We hypothesized that these features developed because of differences in fluid-induced shear stresses due to substrate architecture and that integrins mediate these responses. Computational fluid dynamics analyses predicted that cells on fully porous substrates experience time-dependent shear stresses that differ from those experienced by cells on porous-coated substrates with solid bases where media flow-through is restricted. To validate this model, the seeding protocol was modulated to affect fluid flow and this affected cell spreading and matrix accumulation as predicted. Integrin blocking experiments revealed that α5β1 integrins regulated cell shape under these two conditions and when cell spreading was prevented the increased accumulation of collagen and proteoglycans by chondrocytes seeded on fully porous substrates did not occur. Identifying the substrate-induced mechanical and molecular mechanisms that influence chondrocyte behaviour and tissue formation may ultimately lead to the formation of a tissue that more closely resembles natural articular cartilage.

Keywords
Cartilage tissue engineering; Cell spreading; Computational fluid dynamics; Integrin; Titanium alloy
First Page Preview
Substrate architecture and fluid-induced shear stress during chondrocyte seeding: Role of α5β1 integrin
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 16, June 2008, Pages 2477–2489
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us