fulltext.study @t Gmail

Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes

Paper ID Volume ID Publish Year Pages File Format Full-Text
10078 662 2007 8 PDF Available
Title
Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes
Abstract

Hydroxyapatite (HA) coated liposomes (HACL) have been successfully manufactured and filled with a model hydrophobic (lipophilic) drug, indomethacin (IMC). These HACL particles have been characterized in terms of particle size and ζ-potential. The liposomes are formed from 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Altering their relative proportions caused the ζ-potential to change from −38.8 to −67.0 mV, with a concomitant change in phase transition temperature from 36.4 to 53.3 °C. These changes also affect the drug loading efficiency.The release profiles of IMC have been measured. HA coating of the liposome reduces the release rate of IMC over uncoated liposomes. Under the present experimental conditions 70% of the drug is released after approximately 5 h from the liposome, but coating with HA changes this time to over 20 h. Perhaps most importantly, it has been observed that for uncoated liposomes, IMC is released at a greater rate at pH=7.4 than at pH=4. However, coating with HA reduced the rate at pH=7.4 compared to pH=4. This behaviour arises because IMC is more soluble under basic conditions, but HA is more soluble under acidic conditions. This behaviour shows that it is now possible to have environmental control over the release of drugs from HA-coated liposomes.

Keywords
Liposome; Hydroxyapatite; Indomethacin; Constant composition precipitation; Drug release
First Page Preview
Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 16, June 2007, Pages 2687–2694
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us