fulltext.study @t Gmail

Delivery of siRNA from lyophilized polymeric surfaces

Paper ID Volume ID Publish Year Pages File Format Full-Text
10116 665 2008 7 PDF Available
Title
Delivery of siRNA from lyophilized polymeric surfaces
Abstract

Standard in vitro gene silencing protocols are performed using aqueous formulations of transfection reagents and small interfering RNAs (siRNA) reconstituted immediately prior to use. In this study, we describe a method for producing gene silencing-active lyophilized cationic polymer (chitosan) or lipid (TransIT-TKO) siRNA formulations. We demonstrate specific and efficient knockdown of enhanced green fluorescent protein (EGFP) in H1299 human lung carcinoma cells transfected in plates pre-coated with both TransIT-TKO/siRNA (∼85%) and a chitosan/siRNA formulation containing sucrose as lyoprotectant (∼70%). This method removes the necessity for both siRNA reconstitution immediately prior to use and addition onto cells. Furthermore, silencing activity of the chitosan/siRNA formulation was shown over the period studied (∼2 months) when stored at room temperature. Higher cell viability was observed using the chitosan system compared to the lipid formulation. Silencing of the proinflammatory cytokine tumour necrosis factor (TNF-α) was also demonstrated in the RAW macrophage cell line using the lyophilized chitosan/siRNA system suggesting that the coating can improve the biocompatibility of medical implants. This work describes an efficient gene silencing methodology using freeze-dried formulations with potential applications as a high throughput screening tool for gene function, biocompatible medical implant components and longer shelf-life therapeutics.

Keywords
SiRNA; Chitosan; Lyophilization; RNA interference; Drug delivery; Macrophages.
First Page Preview
Delivery of siRNA from lyophilized polymeric surfaces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 4, February 2008, Pages 506–512
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us