fulltext.study @t Gmail

Correlation of anisotropic cell behaviors with topographic aspect ratio

Paper ID Volume ID Publish Year Pages File Format Full-Text
10159 668 2009 8 PDF Available
Title
Correlation of anisotropic cell behaviors with topographic aspect ratio
Abstract

In this study, we have used nanoimprinting to create a range of micro- and nanoscale gratings, or their combination, in bulk polystyrene plates to investigate anisotropic cell behaviors of human dermal fibroblasts with respect to the aspect ratio (depth/width) of gratings. The depth and width of the polystyrene gratings both show strong effects individually on cell alignment and elongation that are qualitatively similar to the results of other studies. However, consistent quantitative comparison of these individual parameters with different studies is complicated by the diversity of combinations of width and depth that have been tested. Instead, the aspect ratio of the gratings as a unified description of grating topography is a more consistent parameter to interpret topographic dependence of cell morphology. Both cell alignment and elongation increase with increasing aspect ratio, and even a shallow grating (aspect ratio of ∼0.05) is sufficient to induce 80% cell alignment. Re-plotting data recently published by other groups vs. aspect ratio shows a similar dependence, despite differences in cell types and surface structures. This consistency indicates that aspect ratio is a general factor to characterize cell behaviors. The relationship of cell elongation and alignment with topographic aspect ratio is interpreted in terms of the theory of contact guidance. This model provides simplicity and flexibility in geometry design for devices and materials that interface with cells.

Keywords
Nanoimprint lithography; Topography; Aspect ratio; Human dermal fibroblast; Cell alignment; Cell elongation
First Page Preview
Correlation of anisotropic cell behaviors with topographic aspect ratio
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 8, March 2009, Pages 1560–1567
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us