fulltext.study @t Gmail

Biphasic scaffold for annulus fibrosus tissue regeneration

Paper ID Volume ID Publish Year Pages File Format Full-Text
10197 671 2008 10 PDF Available
Title
Biphasic scaffold for annulus fibrosus tissue regeneration
Abstract

Intervertebral disc (IVD) degeneration is the major cause of lower back pain, while the currently available treatments are symptomatic rather than curative. Tissue engineering is a powerful therapeutic strategy that can restore the normal biomechanical motion of the human spine. The ability of a biphasic elastic scaffold to structurally and elastically simulate the annulus fibrosus (AF) tissue of the IVD was explored. The outer phase of the scaffold was a ring-shaped demineralized bone matrix gelatin (BMG) extracted from cortical bone, which mimicks the type I collagen structure and ligamentous properties of outer AF. The inner phase of the scaffold was a bio-biomaterial poly(polycaprolactone triol malate) (PPCLM) orientated in concentric sheets and seeded with chondrocytes to recapitulate the inner layer of the AF, which is rich in type II collagen and proteoglycan. The mechanical properties and degradation of PPCLM could be adjusted by controlling the post-polymerization time of the pre-polymer. PPCLM also demonstrated good biocompatibility in a foreign body response in vivo assay. Incorporation of BMG into the scaffold enhanced the compressive strength compared with PPCLM alone. In addition, the tensile stress of the BMG/PPCLM scaffold was 50-fold greater than that of PPCLM alone, and close to that of normal rabbit AF. Finally, the biphasic scaffold supported the growth of rabbit chondrocytes, as confirmed by Safranin-O and type II collagen immunostaining. The excellent mechanical properties and biocompatibility of the BMG/PPCLM scaffold make it a promising candidate for AF repair.

Keywords
Polycaprolactone; Biphasic scaffold; Tissue engineering; Intervertebral disc; Annulus fibrosus
First Page Preview
Biphasic scaffold for annulus fibrosus tissue regeneration
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 6, February 2008, Pages 643–652
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us