fulltext.study @t Gmail

Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
1030 72 2011 9 PDF Available
Title
Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells
Abstract

This research focused on developing a modular poly(ethylene glycol) (PEG) scaffold, assembled from PEG microgels and collagen I, to provide an environment to decouple the chemical and mechanical cues within a three-dimensional scaffold. We first characterized the microgel fabrication process, examining the size, polydispersity, swelling ratio, mesh size and storage modulus of the polymer particles. The resulting microgels had a low polydispersity index, PDI = 1.08, and a diameter of ∼1.6 μm. The mesh size of the microgels, calculated from the swelling ratio, was 47.53 Å. Modular hydrogels (modugels) were then formed by compacting N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride/N-hydroxysuccinimidyl group-activated microgels with PEG–4arm-amine and 0, 1, 10, or 100 μg ml−1 collagen. The stiffness (G∗) of the modugels was not significantly altered with the addition of collagen, allowing for modification of the chemical environment independent from the mechanical properties of the scaffold. PC12 cell aggregation increased in modugels as collagen concentrations increased and cell viability in modugels was improved over bulk PEG hydrogels. Overall, these results indicate that further exploration of modular scaffolds formed from microgels could allow for a better understanding of the relationship between the chemical and mechanical properties and cellular behavior.

Keywords
Poly(ethylene glycol); Hydrogel; Modular scaffold; Microgel; Collagen
First Page Preview
Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 11, November 2011, Pages 3841–3849
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering