fulltext.study @t Gmail

Time-dependent changes in adhesive force between chondrocytes and silk fibroin substrate

Paper ID Volume ID Publish Year Pages File Format Full-Text
10319 679 2007 9 PDF Available
Title
Time-dependent changes in adhesive force between chondrocytes and silk fibroin substrate
Abstract

In tissue engineering for cartilage repair using scaffold, initial chondrocyte–material interactions are significantly important for the following cell behaviors such as phenotypic expression and matrix synthesis. Silk fibroin scaffold is considered to be one of the useful materials in/on which chondrocytes can proliferate without dedifferentiating into fibroblast-like cells and can organize a hyaline-like tissue. For the purpose of seeking some useful aspects for designing scaffold, initial adhesive force of chondrocytes to the surface of fibroin substrate was measured by using a lab-made apparatus applying the cantilever beam method. It was found that the adhesive force per unit spreading area of chondrocytes on fibroin substrate had a clear peak between 6 and 12 h after seeding. From the results of immunofluorescence staining for actin and vinculin during this period, it could be thought that an immature formation of actin fibers which was uniquely observed at the periphery of cells attaching to fibroin substrate did not contribute to the increase of adhesive force. Results in this study suggested that surface of the fibroin substrate was gradually covered with some substances which inhibit the adhesion during this period. These cell–material interactions have a possibility to be useful information for designing the adhesive performance of scaffold surface in cartilage regeneration.

Keywords
Cell adhesion; Chondrocyte; Mechanical test; Silk
First Page Preview
Time-dependent changes in adhesive force between chondrocytes and silk fibroin substrate
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 10, April 2007, Pages 1838–1846
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us