fulltext.study @t Gmail

Chemotherapeutic implants via subcritical CO2 modification

Paper ID Volume ID Publish Year Pages File Format Full-Text
10362 681 2007 8 PDF Available
Title
Chemotherapeutic implants via subcritical CO2 modification
Abstract

Polymer-based biomaterials have a broad range of current applications in medicine. Many implants generate a favorable biomedical outcome solely by providing short-term mechanical stability that allows healing of the surrounding tissues. An example is polymeric reconstructive resorbable plates having initial strengths sufficient to stabilize bone segments while allowing the osteosynthesis needed to restore original function following tumor resection. Simultaneous, localized delivery of the widely employed chemotherapeutic paclitaxel following tumor removal presents a particularly desirable goal in this context. By using compressed/subcritical CO2 at moderate pressures (as opposed to the more familiar supercritical pressures) to embed paclitaxel in clinically utilized reconstructive plating, the form of the implant can be preserved while adding an inherently localized chemotherapeutic function. In vitro tests demonstrate the efficacy of the embedded paclitaxel against adherent MCF-7 breast cancer cells within the immediate area of the polylactic acid (PLA). CO2 can be utilized to add dual structural-chemotherapeutic function to polymeric surfaces without a change in form. The ability to ‘piggyback’ chemotherapeutic function into nearly any polymeric surface should find widespread utility.

Keywords
Chemotherapy; Controlled drug release; In vitro test; Polylactic acid; Degradation
First Page Preview
Chemotherapeutic implants via subcritical CO2 modification
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 36, December 2007, Pages 5562–5569
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us