fulltext.study @t Gmail

Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
10424 684 2007 10 PDF Available
Title
Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering
Abstract

The aim of this study was to produce a natural, acellular matrix from porcine bladder tissue for use as a scaffold in developing a tissue-engineered bladder replacement. Full-thickness, intact porcine bladders were decellularised by distention and immersion in hypotonic buffer containing 0.1% (w/v) SDS and nuclease enzymes. Histological analysis of the resultant matrices showed they were completely acellular; that the major structural proteins had been retained and that there were some residual poorly soluble intracellular proteins. The amount of DNA per mg dry weight of fresh porcine bladder was 2.8 (±0.1) μg/mg compared to 0.1 (±0.1) μg/mg in decellularised bladder and biochemical analysis showed proportional differences in the hydroxyproline and glycosaminoglycan content of the tissue before and after decellularisation. Uniaxial tensile testing indicated that decellularisation did not significantly compromise the ultimate tensile strength of the tissue. There was, however, an increase in the collagen and elastin phase slopes indicating decreased extensibility. Cytotoxicity assays using porcine smooth muscle cell cultures excluded the presence of soluble toxins in the biomaterial.In summary, a full-thickness natural acellular matrix retaining the major structural components and strength of the urinary bladder has been successfully developed. The matrix is biocompatible with bladder-derived cells and has potential for use in urological surgery and tissue-engineering applications.

Keywords
Bladder tissue engineering; Mechanical properties; Scaffold; Smooth muscle cells
First Page Preview
Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 6, February 2007, Pages 1061–1070
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us