fulltext.study @t Gmail

PEGylation of microspheres for therapeutic embolization: Preparation, characterization and biological performance evaluation

Paper ID Volume ID Publish Year Pages File Format Full-Text
10438 684 2007 11 PDF Available
Title
PEGylation of microspheres for therapeutic embolization: Preparation, characterization and biological performance evaluation
Abstract

In this study, microspheres designed for embolization, defined as GF2000-Trisacryl® MS (GF-MS) and DEAE-Trisacryl® MS (DEAE-MS), were originally PEGylated using (3-amino propyl) triethoxy silane as coupling agent. Indomethacin was loaded into both PEGylated and non-PEGylated DEAE-MS, displaying ion-exchange ability, through a batch process with a respective capacity of 1.2 and 0.25 g/g. The morphology of naked and PEGylated MS was evaluated by scanning electron microscopy (SEM). Both micosphere resins surface looked like orange skin, although DEAE-MS showed a slightly rougher surface due to the copolymerization process. PEGylated microspheres have a most likely swelling surface owing to the presence of PEG hydrophilic chains. The mean diameters were of about 66 and 60 μm for GF-MS and DEAE-MS, respectively. Data obtained for PEGylated MS by Fourier Transform Infrared spectroscopy (FTIR) confirmed that microspheres were successfully PEGylated. Finally, complement activation in vitro was performed to evaluate the activating capacity of different microspheres. Both PEGylated GF-MS and DEAE-MS activated the complement system of about 33% less than their corresponding naked microspheres, while loading PEGylated DEAE-MS with indomethacin almost suppressed complement activation. This inhibiting role implies that PEGylation as well as loading the microspheres with anti-inflammatory drug has a compact effect on the interaction of microspheres with blood proteins.

Keywords
PEGylation; Grafting; Microspheres (MS); Embolization; Complement activation
First Page Preview
PEGylation of microspheres for therapeutic embolization: Preparation, characterization and biological performance evaluation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 6, February 2007, Pages 1198–1208
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us