fulltext.study @t Gmail

In vitro degradation characteristics of photocrosslinked anhydride systems for bone augmentation applications

Paper ID Volume ID Publish Year Pages File Format Full-Text
10469 686 2007 12 PDF Available
Title
In vitro degradation characteristics of photocrosslinked anhydride systems for bone augmentation applications
Abstract

In the past decade, injectable biomaterials that are capable of in situ formation have garnered increased interest for use in restorative orthopedic procedures. In this study, the in vitro degradation of photocrosslinked polyanhydride matrices, derived from methacrylic anhydrides of 1,6-bis(p-carboxyphenoxy)hexane (MCPH) and sebacic acid (MSA) were evaluated over a 6-week period under physiological conditions. These matrices were augmented with two additives—the reactive diluent poly(ethylene glycol) diacrylate (PEGDA) and the buffering agent calcium carbonate (CaCO3). Disk shaped specimens were produced by crosslinking the components using both chemical and photoinitiators and exposure to visible light. The experimental variables studied included: MCPH:MSA ratio, PEGDA molecular weight and weight fraction, and incorporation of CaCO3. The effects of these variables on local pH, water uptake, mass loss, and mechanical properties were explored. Increasing the MCPH:MSA ratio decreased the mass loss and water uptake at predetermined endpoints, and decreased buffer acidity during degradation. Both PEGDA and CaCO3 were found to decrease acidity and to reduce water uptake during degradation. Incorporation of CaCO3 enabled maintenance of compressive modulus during degradation. These results demonstrate that incorporation of reactive diluents and nonreactive additives into networks of photocrosslinked anhydrides can improve system properties as a material for bone replacement.

Keywords
Injectable; Spinal fusion; Drug delivery; Photocurable; Bioerodible
First Page Preview
In vitro degradation characteristics of photocrosslinked anhydride systems for bone augmentation applications
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 35, December 2007, Pages 5259–5270
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us