fulltext.study @t Gmail

An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo

Paper ID Volume ID Publish Year Pages File Format Full-Text
1049 72 2011 11 PDF Available
Title
An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo
Abstract

In this study, the in vivo tissue reaction to a new triphasic and injectable paste-like bone-substitute material composed of beta-tricalcium phosphate (β-TCP), methylcellulose and hyaluronic acid was analyzed. Using a subcutaneous implantation model, the interaction of these materials and the peri-implant tissue reaction were tested in Wistar rats for up to 60 days by means of established histological methods, including histomorphometrical analysis. The study focused on tissue integration, classification of the cellular inflammatory response and the degradation of the material. Groups composed of animals injected only with β-TCP granules, sham-operated animals and animals injected with saline were used as controls. After implantation, the triphasic bone-substitute material was present as a bulk-like structure with an inner and outer core. Over a period of 60 days, the material underwent continuous degradation from the periphery towards the core. The implantation bed of the β-TCP granule control group was invaded by phagocytes and formed a poorly vascularized connective tissue soon after implantation. This inflammatory response continued throughout the study period and filled the implantation bed. Significantly, the combination of the three biocompatible materials into one injectable paste-like bone-substitute material enabled modification of the tissue reaction to the implant and resulted in a longer in vivo lifetime than that of β-TCP granules alone. In addition, this combination increased the vascularization of the implantation bed, which is essential for successful tissue regeneration.

Keywords
Beta-tricalcium phosphate; Injectable bone substitute; Methylcellulose; Hyaluronic acid; Polymer solution
First Page Preview
An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 11, November 2011, Pages 4018–4028
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us