fulltext.study @t Gmail

Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumor applications

Paper ID Volume ID Publish Year Pages File Format Full-Text
10519 688 2009 12 PDF Available
Title
Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumor applications
Abstract

A poly(organophosphazene)–PTX conjugate was synthesized by a covalent ester linkage between PTX and carboxylic acid-terminated poly(organophosphazene), which can be readily modified by various hydrophobic, hydrophilic, and other functional substitutes. The physicochemical properties, hydrolytic degradation and PTX release behaviors of the polymer–PTX conjugate were characterized, in addition to the in vitro and in vivo antitumor activities. The aqueous solutions of these conjugates showed a sol–gel transition behavior that depended on temperature changes. The in vitro antitumor activity of the polymer–PTX conjugate was investigated by an MTT assay against human tumor cell lines. From the in vivo antitumor activity studies with tumor-induced (xenografted) nude mice, the polymer–paclitaxel conjugate hydrogels after local injection at the tumor site were shown to inhibit tumor growth more effectively and longer than paclitaxel and saline alone, indicating that the tumor-active paclitaxel from the polymer–PTX conjugate hydrogel is released slowly over a longer period of time and effectively accumulated locally in the tumor sites. These combined observations suggest that this poly(organophosphazene)–PTX conjugate holds promise for use in clinical studies as single and/or combination therapies.

Keywords
Biodegradable; Thermosensitive; Hydrogel; Polymer–drug conjugate; Paclitaxel; Antitumor activity
First Page Preview
Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumor applications
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 12, April 2009, Pages 2349–2360
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us