fulltext.study @t Gmail

The role of hydroxyapatite in citric acid-based nanocomposites: Surface characteristics, degradation, and osteogenicity in vitro

Paper ID Volume ID Publish Year Pages File Format Full-Text
1053 72 2011 7 PDF Available
Title
The role of hydroxyapatite in citric acid-based nanocomposites: Surface characteristics, degradation, and osteogenicity in vitro
Abstract

The incorporation of nanoscale hydroxyapatite (HA) into biodegradable polymers can potentially mimic the native structure of bone and influence the mechanical properties and the extent of bioactivity. In this study nanocomposites of poly(1,8-octanediol-co-citrate) (POC) containing 40, 50, and 60 wt.% HA (POC–HA) were fabricated and characterized. Nanocomposite hydrophilicity and the degradation properties in vitro were evaluated via contact angle measurements, scanning electron microscopy (SEM), and mass loss measurements. Human mesenchymal stem cells (hMSC) were cultured on POC–HA nanocomposites in both growth and osteogenic media. Cell proliferation, alkaline phosphatase activity, and osteocalcin were measured. The equilibrium water in air contact angles confirmed all of the nanocomposites to be hydrophilic (23.4 ± 8.1°, 27 ± 9.1°, and 27.7 ± 3.5° for 40, 50, and 60 wt.% HA, respectively). Over a period of 26 weeks the degradation rate increased with decreasing HA content and pore formation was evident for POC–HA containing 40 wt.% HA, whereas POC with 50 and 60 wt.% HA lacked pores (mass loss at 26 weeks for 40, 50, and 60 wt.% HA, 27.4 ± 1.6%, 17.7 ± 1.6%, and 6.3 ± 2.6%, respectively). hMSC adhered and proliferated well on all composites, confirming biocompatibility for at least 21 days. An increase in adhesion and proliferation was found with increasing HA nanoparticle content (ng DNA at day 21 for 40, 50, and 60 wt.% HA, 130.4 ± 49.4, 184.4 ± 86.4, 314.1 ± 92.3). Alkaline phosphatase activity and osteocalcin concentration correlated with HA content (alkaline phosphate activity in expansion medium and osteogenic medium for 40, 50, and 60 wt.% HA, 256.1 ± 71.8%, 304.0 ± 128.7%, and 500.2 ± 89.9%, and 358.4 ± 124.1%, 653.7 ± 216.5%, and 814.4 ± 68.8%, respectively; osteocalcin concentration in expansion medium and osteogenic medium for 40, 50, and 60 wt.% HA, 236.9 ± 7.8%, 253.0 ± 7.5%, and 285.2 ± 11.4%, and 265.8 ± 15.0%, 288.3 ± 17.9%, and 717.3 ± 38.7%, respectively). This study provides insight into how the HA nanoparticle content can modulate the cell compatibility and physical properties of POC–HA nanocomposites.

Keywords
Bone tissue engineering; Hydroxyapatite; Osteogenicity; Mesenchymal stem cell; Citric acid
First Page Preview
The role of hydroxyapatite in citric acid-based nanocomposites: Surface characteristics, degradation, and osteogenicity in vitro
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 11, November 2011, Pages 4057–4063
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us