fulltext.study @t Gmail

Volumetric interpretation of protein adsorption: Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity

Paper ID Volume ID Publish Year Pages File Format Full-Text
10534 689 2006 12 PDF Available
Title
Volumetric interpretation of protein adsorption: Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity
Abstract

The solution-depletion method of measuring human serum albumin (HSA) adsorption to surface-modified glass-particle adsorbents with incrementally increasing hydrophilicity is implemented using SDS gel electrophoresis as a separation and quantification tool. It is shown that adsorbent capacity for albumin measured in interfacial–concentration units (mg/mL) decreases monotonically with increasing surface energy (water wettability) to detection limits near an adsorbent-particle water adhesion tension τ0=30dyne/cm (nominal water contact angle θ=65∘θ=65∘) and that albumin does not adsorb to (concentrate within the surface region of) more hydrophilic adsorbents. These adsorbed-mass measurements corroborate predictions based on interfacial energetics and are consistent with AFM measurement of protein–surface adhesion. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical adsorbent surface from bulk solution. Theory is shown to both anticipate and accommodate experimental results for all test adsorbents, suggesting that the underlying model is descriptive of the essential physical chemistry of albumin adsorption to surfaces spanning the full range of observable water wetting. In particular, application of theory to experimental data shows that the free-energy cost of dehydrating the surface region by protein displacement upon adsorption increases with increasing adsorbent hydrophilicity in a manner that controls ultimate capacity for protein. It is concluded that a simple, three-component free-energy rule adequately describes protein adsorption from aqueous solution, at least for materials bearing varying surface concentrations of anionic (not cationic) functional groups.Impact statementThis work yields detailed insights into the physical chemistry of protein adsorption by elucidating relationships among adsorbent surface energy, capacity to adsorb the protein human serum albumin, and the energy required to displace vicinal water from the interface.

Keywords
Protein adsorption; Surface energy; Albumin
First Page Preview
Volumetric interpretation of protein adsorption: Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 34, December 2006, Pages 5801–5812
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us