fulltext.study @t Gmail

Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration

Paper ID Volume ID Publish Year Pages File Format Full-Text
10538 689 2006 9 PDF Available
Title
Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration
Abstract

In the present study, we hypothesized that a novel approach to promote vascularization would be to create injectable three-dimensional (3-D) scaffolds with encapsulated growth factor that enhance the sustained release of growth factor and induce the angiogenesis. We demonstrate that a 3-D scaffold can be formed by mixing of peptide-amphiphile (PA) aqueous solution with basic fibroblast growth factor (bFGF) suspension. PA was synthesized by standard solid phase chemistry that ends with the alkylation of the NH2 terminus of the peptide. A 3-D network of nanofibers was formed by mixing bFGF suspensions with dilute aqueous solutions of PA. Scanning electron microscopy (SEM) observation revealed the formation of fibrous assemblies with an extremely high aspect ratio and high surface areas. In vitro and in vivo release profile of bFGF from 3-D network of nanofibers was investigated while angiogenesis induced by the released bFGF was assessed. When aqueous solution of PA was subcutaneously injected together with bFGF suspension into the back of mice, a transparent 3-D hydrogel was formed at the injected site and induced significant angiogenesis around the injected site, in marked contrast to bFGF injection alone or PA injection alone. The combination of bFGF-induced angiogenesis is a promising procedure to improve tissue regeneration.

Keywords
Scaffold; Peptide amphiphile; Nanofibers; Self-assembly; Angiogenesis
First Page Preview
Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 34, December 2006, Pages 5836–5844
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us