fulltext.study @t Gmail

A citric acid-based hydroxyapatite composite for orthopedic implants

Paper ID Volume ID Publish Year Pages File Format Full-Text
10539 689 2006 10 PDF Available
Title
A citric acid-based hydroxyapatite composite for orthopedic implants
Abstract

We describe a novel approach to process bioceramic microparticles and poly(diol citrates) into bioceramic–elastomer composites for potential use in orthopedic surgery. The composite consists of the biodegradable elastomer poly(1,8-octanediol-citrate) (POC) and the bioceramic hydroxyapatite (HA). The objective of this work was to characterize POC–HA composites and assess the feasibility of fabricating tissue fixation devices using machining and molding techniques. The mechanical properties of POC–HA composites with HA (40, 50, 60, 65 wt.%) were within the range of values reported for tissue fixation devices (for POC–HA 65 wt.%, Sb=41.4±3.1, Eb=501.7±40.3, Sc=74.6±9.0, Ec=448.8±27.0, St=9.7±2.3, Et=334.8±73.5, Ss=27.7±2.4, Ts=27.3±4.9, all values in MPa). At 20 weeks, the weight loss of POC–HA composites ranged between 8 and 12 wt.%, with 65 wt.% HA composites degrading the slowest. Exposure of POC–HA to simulated body fluid resulted in extensive mineralization in the form of calcium phosphate with Ca/P of 1.5–1.7 similar to bone. POC–HA supported osteoblast adhesion in vitro and histology results from POC–HA samples that were implanted in rabbit knees for 6 weeks suggest that the composite is biocompatible. Synthesis of POC–HA is easy and inexpensive, does not involve harsh solvents or initiators, and the mechanical properties of POC–HA with 65 wt.% HA are suitable for the fabrication of potentially osteoconductive bone screws.

Keywords
Composites; Mechanical properties; Biodegradation; Osteoblast; Hydroxyapatite
First Page Preview
A citric acid-based hydroxyapatite composite for orthopedic implants
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 34, December 2006, Pages 5845–5854
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us