fulltext.study @t Gmail

The effect of a hydroxamic acid-containing polymer on active matrix metalloproteinases

Paper ID Volume ID Publish Year Pages File Format Full-Text
10597 693 2009 8 PDF Available
Title
The effect of a hydroxamic acid-containing polymer on active matrix metalloproteinases
Abstract

Matrix metalloproteinase (MMP) sequestering polymer microspheres were prepared by a post-polymerization hydroxamic acid derivatization of poly(methyl methacrylate-co-methacrylic acid). The microspheres were designed to selectively bind MMPs from solutions on contact through a direct interaction between the polymer-bound hydroxamic acid groups and the characteristic catalytic site zinc atom common to all MMPs. MMP activity assays showed that the hydroxamic acid microspheres reduce MMP activity on contact in a time and concentration-dependent fashion. This effect was observed for several MMP subclasses (MMP-2, -3, -8 and -13) suggesting that the microspheres possess a broad-spectrum MMP binding capacity. However, inactive pro-forms of MMPs showed little binding affinity for the microspheres indicating that the interaction was dependent on MMP activation. The preferential binding of active MMPs was confirmed by MMP-3 and MMP-8 activation studies, which demonstrated significant increases in microsphere binding on activation. The MMP sequestering effect of the microspheres was also demonstrated in a physiologically relevant solution (human chronic wound fluid extract) indicating that the binding interaction was effective in a multi-component, competitive adsorption environment. Thus, the hydroxamic acid-containing microspheres may find use as localized, broad-spectrum MMP inhibitors for the treatment of a number of disease conditions characterized by elevated MMP activity.

Keywords
Matrix metalloproteinase; Microsphere; Copolymer; Hydroxamic acid
First Page Preview
The effect of a hydroxamic acid-containing polymer on active matrix metalloproteinases
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 10, April 2009, Pages 1890–1897
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us