fulltext.study @t Gmail

The effect of gas plasma modification on platelet and contact phase activation processes

Paper ID Volume ID Publish Year Pages File Format Full-Text
10661 697 2007 10 PDF Available
Title
The effect of gas plasma modification on platelet and contact phase activation processes
Abstract

Medical-grade polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), polyetherurethane (PEU) and ultrahigh molecular weight polyethylene (UHMWPE) were plasma treated with O2, Ar, N2 and NH3. Their surface properties were characterised using X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), atomic force microscopy (AFM) and dynamic contact angle (DCA) analysis. Platelet adhesion, aggregation, activation and release of microparticles were determined after contact with whole blood in a cone and plate viscometer. Activation of the coagulation system was quantified in a static environment using a partial thromboplastin time (PTT) assay. The chemical compositions of the untreated surfaces were found to be very similar to those of the bulk material except for PEU, whose surface was comprised almost entirely of soft ether segments. For all materials, the different plasma treatments resulted in moderate etching with the incorporation of functional groups and removal of side groups: defluorination, dehydrogenation, cleavage of methyl side groups and soft segments for PTFE, UHMWPE, PDMS and PEU, respectively. Consequently, plasma treatment resulted in increased wettability in all cases. Blood contact with the virgin materials resulted in activation of platelets and the clotting cascade. Plasma treatment resulted in a significant reduction in platelet adhesion for all materials and all treatments. In the case of PTFE and PEU, the activation status of these cells was also reduced. Plasma treatment of all materials reduced fluid-phase CD62P expression. Platelet aggregate size correlated well with degree of aggregate formation, but many treatments increased the degree of aggregation, as was the case for microparticle shedding. There was no correlation between CD62P expression, aggregate formation and platelet microparticle (PMP) shedding. It is concluded that despite incorporation of the same chemical groups, the pattern of response to blood in vitro is not the same across different polymers.

Keywords
Polymers; Haemocompatibility; Platelet; Microparticle; Coagulation
First Page Preview
The effect of gas plasma modification on platelet and contact phase activation processes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 31, November 2007, Pages 4561–4570
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us