fulltext.study @t Gmail

Si–C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: Optimization for implantable optical materials

Paper ID Volume ID Publish Year Pages File Format Full-Text
10724 700 2007 8 PDF Available
Title
Si–C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: Optimization for implantable optical materials
Abstract

Porous silicon has shown potential for various applications in biology and medicine, which require that the material (1) remain stable for the length of the intended application and (2) resist non-specific adsorption of proteins. Here we explore the efficacy of short oligo(ethylene glycol) moieties incorporated into organic layers via two separate strategies in achieving these aims. In the first strategy the porous silicon structure was modified in a single step via hydrosilylation of α-oligo(ethylene glycol)-ω-alkenes containing three or six ethylene glycol units. The second strategy employs two steps: (1) hydrosilylation of succinimidyl-10-undecenoate and (2) coupling of an amino hexa(ethylene glycol) species. The porous silicon photonic crystals modified by the two-step strategy displayed greater stability relative to the single step procedure when exposed to conditions of physiological temperature and pH. Both strategies produced layers that resist non-specific adsorption of proteins as determined with fluorescently labelled bovine serum albumin. The antifouling behaviour and greater stability to physiological conditions provided by this chemistry enhances the suitability of porous silicon for biomaterials applications.

Keywords
Porous silicon; Photonic crystals; Self-assembled monolayers; Protein resistance; Oligo(ethylene glycol)
First Page Preview
Si–C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: Optimization for implantable optical materials
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 20, July 2007, Pages 3055–3062
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us