fulltext.study @t Gmail

Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
10742 701 2007 10 PDF Available
Title
Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering
Abstract

In this study the attention has been focused on the ester derivative of hyaluronic acid (HA), HYAFF®11, as a potential three-dimensional scaffold in adipose tissue engineering. Different HYAFF®11 sponges having different pore sizes, coated or not coated with HA, have been studied from a rheological and morphological point of view in order to correlate their structure to the macroscopic and degradation properties both in vitro and in vivo, using rat model. The in vitro results indicate that the HYAFF®11 sponges possess proper structural and mechanical properties to be used as scaffolds for adipose tissue engineering and, among all the analysed samples, uncoated HYAFF®11 large-pore sponges showed a longer lasting mechanical stability. From the in vivo results, it was observed that the elastic modulus of scaffolds seeded with preadipocytes, the biohybrid constructs, and explanted after 3 months of implantation in autologous rat model are over one order of magnitude higher than the corresponding values for the native tissue. These results could suggest that the implanted scaffolds can be invaded and populated by different cells, not only adipocytes, that can produce new matrix having different properties from that of adipose tissue.

Keywords
Adipose tissue engineering; Hyaluronic acid; Scaffold; Viscoelasticity
First Page Preview
Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 30, October 2007, Pages 4399–4408
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us