fulltext.study @t Gmail

The in vivo and in vitro degradation behavior of poly(trimethylene carbonate)

Paper ID Volume ID Publish Year Pages File Format Full-Text
10763 702 2006 8 PDF Available
Title
The in vivo and in vitro degradation behavior of poly(trimethylene carbonate)
Abstract

The in vivo and in vitro degradation behavior of poly(trimethylene carbonate) (PTMC) polymers with number average molecular weights of 69×103, 89×103, 291×103 and 457×103 g/mol (respectively abbreviated as PTMC69, PTMC89, PTMC291 and PTMC457) was investigated in detail. PTMC rods (3 mm in diameter and 4 mm in length) implanted in the femur and tibia of rabbits degraded by surface erosion. The mass loss of high molecular weight PTMC457 specimens was 60 wt% in 8 wks, whereas the mass loss of the lower molecular weight PTMC89 specimens in the same period was 3 times lower. PTMC discs of different molecular weights immersed in lipase solutions (lipase from Thermomyces lanuginosus) degraded by surface erosion as well. The mass and thickness of high molecular weight PTMC291 discs decreased linearly in time with an erosion rate of 6.7 μm/d. The erosion rate of the lower molecular weight PTMC69 specimens was only 1.4 μm/d. It is suggested that the more hydrophilic surface of the PTMC69 specimens prevents the enzyme from acquiring a (hyper)active conformation. When PTMC discs were immersed in media varying in pH from 1 to 13, the non-enzymatic hydrolysis was extremely slow for both the high and low molecular weight samples. It can be concluded that enzymatic degradation plays an important role in the surface erosion of PTMC in vivo.

Keywords
Poly(trimethylene carbonate); In vivo degradation; In vitro degradation; Enzymatic surface erosion; Lipase
First Page Preview
The in vivo and in vitro degradation behavior of poly(trimethylene carbonate)
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 9, March 2006, Pages 1741–1748
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us