fulltext.study @t Gmail

Development of a large titanium bone chamber to study in vivo bone ingrowth

Paper ID Volume ID Publish Year Pages File Format Full-Text
10771 702 2006 7 PDF Available
Title
Development of a large titanium bone chamber to study in vivo bone ingrowth
Abstract

In the bone conduction chamber (BCC) various materials and factors have been tested for their effect on bone graft incorporation and bone healing. However, biomaterials often have to be crushed to fit in this small chamber. Since cellular responses to biomaterials are influenced by the size and shape of particles, research concerning the evaluation of biomaterials is limited by the dimensions of this bone chamber. We enlarged and modified the BCC in order to be able to investigate the in vivo influences of biomaterials, growth factors and bone graft processing on tissue and bone ingrowth. Seven goats received four bone chambers each, three modified models and a BCC. The first model (BCC+) had two ingrowth openings, similar to that of the BCC. The second model had two round ingrowth openings (ROU). The third model had a open bottom for bone ingrowth (BOT). After 12 weeks, bone ingrowth distances were measured on histological sections and using μCT. Bone ingrowth was significantly higher (p=0.009p=0.009 and 0.0080.008) in the ROU compared to the BCC+ and the BOT, respectively. Similar results were found using μCT. The ROU model performed most similar to the BCC (gold standard) and is considered to be a promising new tool in biomaterials research.

Keywords
Bone ingrowth; Bone remodelling; Histomorphometry; Image analysis; In vivo test
First Page Preview
Development of a large titanium bone chamber to study in vivo bone ingrowth
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 9, March 2006, Pages 1810–1816
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us