fulltext.study @t Gmail

Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model

Paper ID Volume ID Publish Year Pages File Format Full-Text
10789 702 1970 8 PDF Available
Title
Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model
Abstract

Many bioactive bone cements were developed for total hip replacement and found to bond with bone directly. However, the mechanical properties at the bone/bone cement interface under load bearing are not fully understood. In this study, a bioactive bone cement, which consists of strontium-containing hydroxyapatite (Sr-HA) powder and bisphenol-α-glycidyl dimethacrylate (Bis-GMA)-based resin, was evaluated in rabbit hip replacement for 6 months, and the mechanical properties of interfaces of cancellous bone/Sr-HA cement and cortical bone/Sr-HA cement were investigated by nanoindentation. The results showed that Young's modulus (17.6±4.2 GPa) and hardness (987.6±329.2 MPa) at interface between cancellous bone and Sr-HA cement were significantly higher than those at the cancellous bone (12.7±1.7 GPa; 632.7±108.4 MPa)and Sr-HA cement (5.2±0.5 GPa; 265.5±39.2 MPa); whereas Young's modulus (6.3±2.8 GPa) and hardness (417.4±164.5 MPa) at interface between cortical bone and Sr-HA cement were significantly lower than those at cortical bone(12.9±2.2 GPa; 887.9±162.0 MPa), but significantly higher than Sr-HA cement(3.6±0.3 GPa; 239.1±30.4 MPa). The results of the mechanical properties of the interfaces were supported by the histological observation and chemical composition. Osseointegration of Sr-HA cement with cancellous bone was observed. An apatite layer with high content of calcium and phosphorus was found between cancellous bone and Sr-HA cement. However, no such apatite layer was observed at the interface between cortical bone and Sr-HA cement. And the contents of calcium and phosphorus of the interface were lower than those of cortical bone. The mechanical properties indicated that these two interfaces were diffused interfaces, and cancellous bone or cortical bone was grown into Sr-HA cement 6 months after the implantation.

Keywords
Bioactive bone cement; Interface; Total hip arthroplasty; Nanoindentation; Mechanical property
First Page Preview
Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 9, March 2006, Pages 1963–1970
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us