fulltext.study @t Gmail

Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation

Paper ID Volume ID Publish Year Pages File Format Full-Text
10927 708 2007 13 PDF Available
Title
Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation
Abstract

In this study, we present a novel composite scaffold fabricated using a thermally induced phase separation (TIPS) process from poly(lactic-co-glycolic) (PLGA) and biomedical polyurethane (PU). This processing method has been tuned to allow intimate (molecular) mixing of these two very different polymers, giving rise to a unique morphology that can be manipulated by controlling the phase separation behaviour of an initially homogenous polymer solution. Pure PLGA scaffolds possessed a smooth, directional fibrous sheet-like structure with pore sizes of 0.1–200 μm, a porous Young's modulus of 93.5 kPa and were relatively brittle to touch. Pure PU scaffolds had an isotropic emulsion-like structure, a porous Young's modulus of 15.7 kPa and were much more elastic than the PLGA scaffolds. The composite PLGA/PU scaffold exhibits advantageous morphological, mechanical and cell adhesion and growth supporting properties, when compared with scaffolds fabricated from PLGA or PU alone. This novel method provides a mechanism for the formation of tailored bioactive scaffolds from nominally incompatible polymers, representing a significant step forward in scaffold processing for tissue-engineering applications.

Keywords
Composite; Scaffold; Polyurethane; Polylactic acid; Mechanical properties; Cell spreading
First Page Preview
Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 12, April 2007, Pages 2109–2121
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us