fulltext.study @t Gmail

Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity

Paper ID Volume ID Publish Year Pages File Format Full-Text
10964 711 2005 11 PDF Available
Title
Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity
Abstract

As acidic monomers of self-etching adhesives are incorporated into dental adhesives at high concentrations, the adhesive becomes more hydrophilic. Water sorption by polymers causes plasticization and lowers mechanical properties. The purpose of this study was to compare the water sorption and modulus of elasticity (E) of five experimental neat resins (EX) of increasing hydrophilicity, as ranked by their Hoy's solubility parameters and five commercial resins.MethodsAfter measuring the initial modulus of all resin disks by biaxial flexure, half the specimens were stored in hexadecane and the rest were stored in water. Repeated measurements of stiffness were made for 3 days. Water sorption and solubility measurements were made in a parallel experiment.ResultsNone of the specimens stored in oil showed any significant decrease in modulus. All resins stored in water exhibited a time-dependent decrease in modulus that was proportional to their degree of water sorption. Water sorption of EX was proportional to Hoy's solubility parameter for polar forces (δpδp) with increasing polarity resulting in higher sorption. The least hydrophilic resin absorbed 0.55 wt% water and showed a 15% decrease in modulus after 3 days. The most hydrophilic experimental resin absorbed 12.8 wt% water and showed a 73% modulus decrease during the same period. The commercial resins absorbed between 5% and 12% water that was associated with a 19–42% reduction in modulus over 3 days.

Keywords
Bis-phenol a derivative; Hydrophilicity; Hydroxyethyl methacrylate; Elasticity; Water
First Page Preview
Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 33, November 2005, Pages 6449–6459
Authors
, , , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us