fulltext.study @t Gmail

In vitro hemocompatibility of self-assembled monolayers displaying various functional groups

Paper ID Volume ID Publish Year Pages File Format Full-Text
10974 711 2005 11 PDF Available
Title
In vitro hemocompatibility of self-assembled monolayers displaying various functional groups
Abstract

Self-assembled monolayers (SAMs) of alkanethiols with various terminating groups (–OH, –CH3, –COOH) and binary mixtures of these alkanethiols were studied with respect to their hemocompatibility in vitro by means of freshly taken human whole blood. The set of smooth monomolecular films with graded surface characteristics was applied to scrutinize hypotheses on the impact of surface chemical–physical properties on distinct blood activation cascades, i.e. to analyze –OH surface groups vs. complement activation, acidic surface sites vs. contact activation/coagulation and surface hydrophobicity vs. thrombogenicity. Blood and model surfaces were analyzed after incubation for the related hemocompatibility parameters. Our results show that the adhesion of leukocytes is abolished on a –CH3 surface and greatly enhanced on surfaces with –OH groups. The opposite was detected for the adhesion of platelets. A strong correlation between the activation of the complement system and the adhesion of leukocytes with the content of –OH groups could be observed. The contact activation for hydrophilic surfaces was found to scale with the amount of acidic surface sites. However, the coagulation and platelet activation did not simply correlate with any surface property and were therefore concluded to be determined by a superposition of contact activation and platelet adhesion.

Keywords
Hemocompatibility; Self-assembled monolayer; Coagulation; Complement; Blood cell adhesion
First Page Preview
In vitro hemocompatibility of self-assembled monolayers displaying various functional groups
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 33, November 2005, Pages 6547–6557
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us