fulltext.study @t Gmail

Characterization of irradiated blends of αα-tocopherol and UHMWPE ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
10986 711 2005 7 PDF Available
Title
Characterization of irradiated blends of αα-tocopherol and UHMWPE ☆
Abstract

Adhesive/abrasive wear in ultra-high molecular weight polyethylene (UHMWPE) has been minimized by radiation cross-linking. Irradiation is followed by melting to eliminate residual free radicals and avoid long-term oxidative embrittlement. However, post-irradiation melting reduces the crystallinity of the polymer and hence its strength and fatigue resistance. We proposed an alternative to post-irradiation melting to be the incorporation of the antioxidant αα-tocopherol into UHMWPE prior to consolidation. αα-Tocopherol is known to react with oxygen and oxidized lipids, stabilizing them against further oxidative degradation reactions. We blended GUR 1050 UHMWPE resin powder with αα-tocopherol at 0.1 and 0.3 wt% and consolidated these blends. Then we gamma-irradiated these blends to 100-kGy. We characterized the effect of αα-tocopherol on the cross-linking efficiency, oxidative stability, wear behavior and mechanical properties of the blends. (I) The cross-link density of virgin, 0.1 and 0.3 wt% αα-tocopherol blended, 100-kGy irradiated UHMWPEs were 175±19, 146±4 and 93±4 mol/m3, respectively. (II) Maximum oxidation indices for 100-kGy irradiated UHMWPE previously blended with 0, 0.1 and 0.3 wt% αα-tocopherol that were subjected to accelerated aging at 80 °C in air for 5 weeks were 3.32, 0.09, and 0.05, respectively. (III) The pin-on-disc wear rates of 100-kGy irradiated UHMWPE previously blended with 0.1 and 0.3 wt% αα-tocopherol that were subjected to accelerated aging at 80 °C in air for 5 weeks were 2.10±0.17 and 5.01±0.76 mg/million cycles, respectively. (IV) Both accelerated aged, αα-tocopherol-blended 100-kGy irradiated UHMWPEs showed higher ultimate tensile strength, higher yield strength, and lower elastic modulus when compared to 100-kGy irradiated, virgin UHMWPE. These results showed that αα-tocopherol-blended 100-kGy irradiated UHMWPEs were not cross-linked to the same extent as the 100-kGy irradiated, virgin UHMWPE.

Keywords
Antioxidant; Polyethylene; Wear mechanism; Lipid; Gamma-irradiation; Hip replacement prosthesis
First Page Preview
Characterization of irradiated blends of αα-tocopherol and UHMWPE ☆
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 33, November 2005, Pages 6657–6663
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us