fulltext.study @t Gmail

Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone

Paper ID Volume ID Publish Year Pages File Format Full-Text
10990 711 2005 11 PDF Available
Title
Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone
Abstract

This laboratory study examined the feasibility of non-invasive, in vivo peripheral quantitative computed tomography (pQCT) method in evaluation of bioactive glass incorporation with bone. An intramedullary defect model of the rat tibia was applied. The defect was filled with bioactive glass microspheres (diameter of 250–315 μm) or was left to heal without filling (empty controls). The results of the pQCT analysis were compared with those of histomorphometry. In the control defects, there was a good correlation (r2=0.776r2=0.776, p<0.001p<0.001) between the pQCT density of the intramedullary space and the amount of new bone measured by histomorphometry. In the defects filled with bioactive glass, the use of thresholding techniques of the applied pQCT system (Stratec XCT Research M) failed in separation of new bone formation and bioactive glass particles. However, detailed analysis of the pQCT attenuation profiles showed time-related changes which well matched with the histomorphometric results of new bone formation both in control and bioactive glass filled defects. The biphasic pQCT attenuation profiles of bioactive glass filled defects could be separated into two distinct peaks. In statistical analysis of various variables, the center (i.e. the value of attenuation) of the major attenuation peak was found to be the most significant indicator of the incorporation process. The center of the peak initially decreased (during the first 4 weeks of healing) and thereafter increased. These two phases probably reflect the primary resorption and reactivity of the bioactive glass microspheres in vivo followed by secondary new bone formation on their surfaces. Based on these results, pQCT-method seems to be suitable for in vivo follow-up of the bioactive glass incorporation processes. Although the imaging technique is not able to discriminate the individual microspheres from invading new bone unambiguously, the attenuation profiling seems to give adequate information about the state of the incorporation process. This information may help to establish non-invasive imaging techniques of synthetic bone substitutes for preclinical and clinical testing of their efficacy.

Keywords
pQCT; Bioactive glass; Bone; Bone graft
First Page Preview
Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 33, November 2005, Pages 6693–6703
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering