fulltext.study @t Gmail

Mathematical modelling of the distribution of newly formed bone in bone tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
11001 711 2005 10 PDF Available
Title
Mathematical modelling of the distribution of newly formed bone in bone tissue engineering
Abstract

New bone formation in bone substitutes is usually investigated by histomorphometric global analysis. This study provides a novel mathematical modelling approach of new bone formation in the use of osteoinductive and functionalized biomaterials for bone tissue engineering. We discuss here the repartition and the probability to get new bone formation inside Biphasic Calcium Phosphate (BCP) loaded with autologous osteogenic cells, functionalized with a cyclo RGD peptide, after implantation in rabbits for 2 and 4 weeks. This local analysis allowed us to complement classical global findings and to demonstrate that after 2 weeks of implantation, the probability of new bone formation was significantly higher in RGD-grafted BCP and that new formed bone was largely distributed from the edge to the centre of the implant. While no significant differences were obtained after 4 weeks of implantation between RGD-grafted and non-grafted materials, distribution of new bone formation inside RGD-grafted materials was significantly more homogeneous as demonstrated by our mathematical modelling approach. In conclusion, local analysis of new bone formation inside macroporous substitutes coupled with mathematical modelling constitutes a potential quantitative approach for the evaluation of the osteoconductive and osteoinductive characteristics of such biomaterials.

Keywords
RGD peptide; Animal model; Image analysis; Modelling
First Page Preview
Mathematical modelling of the distribution of newly formed bone in bone tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 33, November 2005, Pages 6788–6797
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us