fulltext.study @t Gmail

Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass® composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production

Paper ID Volume ID Publish Year Pages File Format Full-Text
11012 712 2010 11 PDF Available
Title
Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass® composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production
Abstract

The objective of the present study was to assess cell attachment, proliferation and extracellular matrix (ECM) production by bovine annulus fibrosus (BAF) cells cultured in vitro in PDLLA/Bioglass® composite foams. PDLLA foams incorporated with different percentages (0, 5 and 30 wt%) of Bioglass® particles were prepared by thermally induced phase separation (TIPS) process and characterized by scanning electron microscopy (SEM). BAF cell morphology and attachment within the PDLLA/Bioglass® foams were analysed using SEM. An assessment of cell proliferation was conducted using the WST-1 assay. The amount of sulphated glycosaminoglycans (sGAG) were quantified using the 1,9-dimethylmethylene blue (DMMB) assay after 4 weeks in culture. Furthermore, the amount of collagen synthesis was determined using a hydroxyproline assay, and the presence of collagen types I and II was investigated using Western blotting. Our results reveal that PDLLA/Bioglass® foam scaffolds can provide an appropriate microenvironment for BAF cell culture which enhances cell proliferation and promotes the production of sGAG, collagen type I and collagen type II. These findings provide preliminary evidence for the use of PDLLA/Bioglass® composite scaffolds as cell-carrier materials for future treatments of intervertebral discs with damaged AF regions.

Keywords
Intervertebral disc; Tissue engineering; Polylactic acid; Bioactive glass
First Page Preview
Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass® composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 11, April 2007, Pages 2010–2020
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us