fulltext.study @t Gmail

A phenomenological model for the degradation of biodegradable polymers

Paper ID Volume ID Publish Year Pages File Format Full-Text
11048 714 2008 9 PDF Available
Title
A phenomenological model for the degradation of biodegradable polymers
Abstract

This paper presents a phenomenological diffusion–reaction model for the biodegradation of biodegradable polymers. The biodegradation process is modelled using a set of simplified reaction–diffusion equations. These partial differential equations are non-dimensionalised giving two normalised parameters which control the interplay between the hydrolysis reaction and the monomer diffusion. The equations are firstly solved for simple cases of plates and pins. The numerical results are presented in the form of biodegradation maps which show the conditions where the biodegradation is controlled by auto-catalysed hydrolysis, non-catalysed hydrolysis, a combination of auto-catalysed and non-catalysed hydrolyses, or a combination of hydrolysis and monomer diffusion, respectively. The degradation maps provide a clear guide for the design of biodegradable fixation devices used in orthopaedic surgeries. Finally the diffusion–reaction equations are solved using the finite element method for strip and square meshes, showing how the model can be used to assist the design of sophisticated fixation devices.

Keywords
Biodegradable polymers; Biodegradation; Modelling; Finite element analysis
First Page Preview
A phenomenological model for the degradation of biodegradable polymers
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 23, August 2008, Pages 3393–3401
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us