fulltext.study @t Gmail

Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro

Paper ID Volume ID Publish Year Pages File Format Full-Text
11113 719 2007 14 PDF Available
Title
Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro
Abstract

Ferumoxtran-10, a dextran-coated ultrasmall superparamagnetic iron oxide particle, has the potential to reveal macrophages in vivo using magnetic resonance imaging potentially acting as a marker of inflammatory status. Pending clinical trials, we examined the interactions of Ferumoxtran-10 with human monocyte-macrophages (HMMs) in vitro to assess its safety and lack of pro-inflammatory activity. After 72 h, Ferumoxtran-10 was not toxic at 1 mg/ml and may be only mildly toxic at 10 mg/ml. Viability in cells with a high intracellular Ferumoxtran-10 load was not affected over 14 days. Ferumoxtran-10 did not interfere with baseline or stimulated cytokine (interleukin-12, interleukin-6, tumour necrosis factor-α or interleukin-1β) or superoxide anion production or with Fc-receptor-mediated phagocytosis. Similarly, Ferumoxtran-10 did not induce cytokine production and was not chemotactic. High-resolution electron microscopy and selected-area electron diffraction confirmed the core of Ferumoxtran-10 is composed of crystalline magnetite. Bright field transmission electron microscopy of thin sections demonstrated that Ferumoxtran-10 was retained in lysosomes of HMM for several days. Ferumoxtran-10 is not toxic to HMMs in vitro, does not activate them to produce pro-inflammatory cytokines or superoxide anions, is not chemotactic and does not interfere with Fc-receptor-mediated phagocytosis. Furthermore, extremely high intracellular Ferumoxtran-10 concentrations had only slight or no effects on these key activities.

Keywords
Nanoparticle; Macrophage; Cytotoxicity; Inflammation; Cell activation; Electron microscopy
First Page Preview
Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 9, March 2007, Pages 1629–1642
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us