fulltext.study @t Gmail

Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material

Paper ID Volume ID Publish Year Pages File Format Full-Text
11121 719 2007 9 PDF Available
Title
Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material
Abstract

Risk of infection is considerable in open fractures and its management is challenging, especially when fracture fixation material is used. Thus, it may be desirable to use a device from which antibiotics can be released in a controlled way. Room temperature processed silica sol–gels are novel, resorbable and biocompatible, controlled release materials. Vancomycin, a potent antibiotic used in treating osteomyelitis, can be released from silica sol–gels. Herein, we describe the synthesis of thin, resorbable, controlled release bactericidal sol–gel films on a Ti-alloy substrate and determine the effect of processing parameters on its degradation and vancomycin release. A close correlation between release and degradation rates suggests that film degradation is the main mechanism underlying the control of release. Using a multi-layer process and various concentrations of vancomycin, released concentrations exceed the minimal inhibitory concentration (MIC) of vancomycin against Staphylococcus aureus. The findings enable the tailoring of release and degradation properties of the films to therapeutic needs by controlling sol–gel processing parameters. Given the bactericidal properties of released vancomycin, and the biocompatibility of the sol–gel films, the present data suggest great promise to prevent and treat bone infections in a clinical setting.

Keywords
Sol–gel techniques; Controlled drug release; Antibacterial; In vitro test
First Page Preview
Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 9, March 2007, Pages 1721–1729
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us