fulltext.study @t Gmail

A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier

Paper ID Volume ID Publish Year Pages File Format Full-Text
11156 721 2007 10 PDF Available
Title
A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier
Abstract

The aim of research was to develop and optimize delivery systems for plasmid DNA (pDNA) based on biodegradable polymers, in particular, poly(ester amine)s (PEAs), suitable for non-viral gene therapy. Poly(ester amine)s were successfully synthesized by Michael addition reaction between polycaprolactone (PCL) diacrylate and low molecular weight polyethylenimine (PEI). PEA/DNA complexes showed effective and stable DNA condensation with the particle sizes below 200 nm, implicating its potential for intracellular delivery. PEAs showed controlled degradation and were essentially non-toxic in all three cells (293 T: Human kidney carcinoma, HepG2: Human hepatoblastoma and HeLa: Human cervix epithelial carcinoma cell lines) at higher doses in contrast to PEI 25 K. PEAs also revealed much higher transfection efficiencies in three cell lines as compared to PEI 25 K. The highest reporter gene expression was observed for PCL/PEI-1.2 (MW 1200) complex having transfection efficiency 15–25 folds higher than PEI 25 K in vitro. Also PEA/DNA complexes successfully transfected cells in vivo after aerosol administration than PEI 25 K. These PEAs can be used as most efficient polymeric vectors which provide a versatile platform for further investigation of structure property relationship along with the controlled degradation, significant low cytotoxicity and high transfection efficiency.

Keywords
Gene delivery; Degradable polymers; Poly(ester amine)s; Polycaprolactone; Polyethylenimine
First Page Preview
A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 4, February 2007, Pages 735–744
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us