fulltext.study @t Gmail

Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft

Paper ID Volume ID Publish Year Pages File Format Full-Text
11166 722 2007 8 PDF Available
Title
Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft
Abstract

In this study, we have evaluated the feasibility of developing a biodegradable collagenous small diameter vascular graft of 2 mm diameter and 1 cm length. In brief, bi-layer type I collagen membrane was fabricated under vacuum suction and lyophilization methods. The smooth muscle cells were inoculated into the lower side of the porous membrane, while endothelial cells were seeded onto upper smooth side of the membrane. After cultured for 7 days, the vascular substitute was either harvested for in vitro examination or in vivo implanted in the subcutaneous layer for biocompatibility test.The tubular vascular prosthesis was then used as a temporary absorbable guide that served as an in vivo vascular graft to promote the complete regeneration of rat inferior vena cava. After implantation for 12 weeks, a thin continuous layer of endothelial cells and smooth muscle cells were lined with the vascular lumen and tunic media, respectively. Histology results showed that there were no signs of significant thrombogeneity and intima hyperplasia. This tissue engineered vascular substitute not only had enough tensile strength and good biocompatibility, but also advanced vascular regeneration. In the future, we suggest that this biodegradable vascular substitute will provide with the possibility in application on small diameter prosthetic grafts in artificial blood vessels.

Keywords
Biomimetic material; Collagen; Co-culture; Vascular grafts
First Page Preview
Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 7, March 2007, Pages 1385–1392
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us