fulltext.study @t Gmail

Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate

Paper ID Volume ID Publish Year Pages File Format Full-Text
1121 76 2009 14 PDF Available
Title
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
Abstract

Immersion of electrospun polycaprolactone (PCL) nanofiber mats in calcium phosphate solutions similar to simulated body fluid resulted in deposition of biomimetic calcium phosphate layer on the nanofibers and thus a highly bioactive novel scaffold has been developed for bone tissue engineering. Coatings with adequate integrity, favorable chemistry and morphology were achieved in less than 6 h of immersion. In the coating solutions, use of lower concentrations of phosphate sources with respect to the literature values (i.e., 3.62 vs. 10 mM) was substantiated by a thermodynamic modeling approach. Recipe concentration combinations that were away from the calculated dicalcium phosphate phase stability region resulted in micron-sized calcium phosphates with native nanostructures. While the nano/microstructure formed by the deposited calcium phosphate layer is controlled by increasing the solution pH to above 6.5 and increasing the duration of immersion experimentally, the nanostructure imposed by the dimensions of the fibers was controlled by the polymer concentration (12% w/v), applied voltage (25 kV) and capillary tip to collector distance (35 cm). The deposited coating increased quantitatively by extending the soak up to 6 h. On the other hand, the porosity values attained in the scaffolds were around 87% and the biomimetic coatings did not alter the nanofiber mat porosities negatively since the deposition continued along the fibers after the first 2 h. Upon confirming the non-toxic nature of the electrospun PCL nanofiber mats, the effects of different nano/microstructures formed were evaluated by the osteoblastic activity. The levels of both alkaline phosphatase activity and osteocalcin were found to be higher in the coated PCL nanofibers than in the uncoated PCL nanofibers, indicating that biomimetic calcium phosphate on PCL nanofibers supports osteoblastic differentiation.

Keywords
Polycaprolactone; Nanofiber; Calcium phosphate coating; Nanocomposite; Bone tissue engineering
First Page Preview
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 8, October 2009, Pages 3098–3111
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us