fulltext.study @t Gmail

Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs

Paper ID Volume ID Publish Year Pages File Format Full-Text
11261 727 2008 9 PDF Available
Title
Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs
Abstract

Polymeric nanosphere-mediated gene delivery may sustain the duration of plasmid DNA (pDNA) administration. In this study, poly(lactic-co-glycolic acid) (PLGA) nanospheres were evaluated as a gene carrier. The pDNA-loaded PLGA nanospheres were formulated with high encapsulation efficiency (87%). The nanospheres sustained release of pDNA for 11 days. The released pDNA maintained its structural and functional integrity. Furthermore, the PLGA nanospheres showed lower cytotoxicity than polyethylenimine (PEI) in vitro and in vivo. The nanospheres with vascular endothelial growth factor (VEGF) gene were injected into skeletal muscle of ischemic limb model, and gene expression mediated by the PLGA nanospheres with VEGF gene was compared to that of PEI/pDNA or naked pDNA in vivo. PLGA nanosphere/pDNA had significantly higher VEGF expression levels in comparison to PEI/pDNA and naked pDNA at 12 days after administration. In addition, gene therapy using PLGA nanospheres resulted in more extensive neovascularization at ischemic sites than both naked pDNA and PEI/pDNA. These results indicated that PLGA nanosphere might be useful as a potential carrier for skeletal muscle gene delivery applications.

Keywords
Angiogenesis; Gene therapy; Nanoparticle; Poly(lactic-co-glycolic acid)
First Page Preview
Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 29, Issue 8, March 2008, Pages 1109–1117
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us