fulltext.study @t Gmail

Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
11269 729 2006 11 PDF Available
Title
Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells
Abstract

Differentiation of embryonic stem (ES) cells typically requires cell–cell aggregation in the form of embryoid bodies (EBs). This process is not very well controlled and final cell numbers can be limited by EB agglomeration and the inability to drive differentiation towards a desired cell type. This study compares three-dimensional (3D) fibrin culture to conventional two-dimensional (2D) suspension culture and to culture in a semisolid methylcellulose medium solution. Two types of fibrin culture were evaluated, including a PEGylated fibrin gel. PEGylation with a difunctional PEG derivative retarded fibrinogen migration during through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a result of crosslinking, similarly, degradation was slowed in the PEGylated gel. ES cell proliferation was higher in both the fibrin and PEGylated fibrin gels versus 2D and methylcellulose controls. FACS analysis and real-time-PCR revealed differences in patterns of differentiation for the various culture systems. Culture in PEGylated fibrin or methylcellulose culture demonstrated features characteristic of less extensive differentiation relative to fibrin and 2D culture as evidenced by the transcription factor Oct-4. Fibrin gels showed gene and protein expression similar to that in 2D culture. Both fibrin and 2D cultures demonstrated statistically greater cell numbers positive for the vascular mesoderm marker, VE-cadherin.

Keywords
Fibrin; Cell culture; Embryonic stem cell; Mesoderm; Vascular
First Page Preview
Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 36, December 2006, Pages 6004–6014
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us