fulltext.study @t Gmail

Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold

Paper ID Volume ID Publish Year Pages File Format Full-Text
11279 729 2006 12 PDF Available
Title
Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold
Abstract

A biofunctional scaffold was constructed with human mesenchymal stem cells (hMSCs) encapsulated in polyelectrolyte complexation (PEC) fibers. Human MSCs were either encapsulated in PEC fibers and constructed into a fibrous scaffold or seeded on PEC fibrous scaffolds. The proliferation, chondrogenic and osteogenic differentiation of the encapsulated and seeded hMSCs were compared for a culture period of 5.5 weeks. Gene expression and extracellular matrix production showed evidences of chondrogenesis and osteogenesis in the cell-encapsulated scaffolds and cell-seeded scaffolds when the samples were cultured in the chondrogenic and osteogenic differentiation media, respectively. However, better cell proliferation and differentiation were observed on the hMSC-encapsulated scaffolds compared to the hMSC-seeded scaffolds. The study demonstrated that the cell-encapsulated PEC fibers could support proliferation and chondrogenic and osteogenic differentiation of the encapsulated-hMSCs. Together with our previous works, which demonstrated the feasibility of PEC fiber in controlled release of drug, protein and gene delivery, the reported PEC fibrous scaffold system will have the potential in composing a multi-component system for various tissue-engineering applications.

Keywords
Fibrous scaffold; Cell encapsulation; Cell therapy; Stem cell differentiation; Mesenchymal stem cells; 3D cell patterning
First Page Preview
Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 36, December 2006, Pages 6111–6122
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us