fulltext.study @t Gmail

Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization

Paper ID Volume ID Publish Year Pages File Format Full-Text
11286 730 2006 10 PDF Available
Title
Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization
Abstract

The biomimetic synthetic phospholipid polymer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has improved the surface property of biomaterials. Both hydrophilic and anti-biofouling surfaces were prepared on polydimethylsiloxane (PDMS) with MPC grafted by surface-initiated photo-induced radical polymerization. Benzophenone was used as the photoinitiator. The quantity of the adsorbed initiator on PDMS was determined by UV absorption and ellipsometry. The poly(MPC)-grafted PDMS surfaces were characterized by XPS, ATR-FTIR and static water contact angle (SCA) measurements. The SCA on PDMS decreased from 115° to 25° after the poly(MPC) grafting. The in vitro single protein adsorption on the poly(MPC)-grafted PDMS decreased 50–75% compared to the unmodified PDMS. The surface friction of the poly(MPC)-grafted PDMS was lower than the unmodified PDMS under wet conditions. The oxygen permeability of the poly(MPC)-grafted PDMS was as high as the unmodified PDMS. The tensile property of PDMS was maintained at about 90% of the ultimate stress and strain after the poly(MPC) grafting. The surface-modified PDMS is expected to be a novel medical elastomer which possesses an excellent surface hydrophilicity, anti-biofouling property, oxygen permeability and tensile property.

Keywords
Polydimethylsiloxane; Phosphorylcholine; Protein adsorption; Wettability; Oxygen permeation; Friction
First Page Preview
Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 30, October 2006, Pages 5151–5160
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us