fulltext.study @t Gmail

Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall

Paper ID Volume ID Publish Year Pages File Format Full-Text
11296 730 2006 7 PDF Available
Title
Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall
Abstract

Many cells in the body reside in a complex three-dimensional (3D) environment stimulated by mechanical force. In vitro bioreactor systems have greatly improved our understanding of the mechanisms behind cell mechanotransduction. Current systems to impose strain in vitro are limited either by the lack of uniform strain profile or inability to strain 3D engineered tissues. In this study, we present a system capable of generating cyclic equibiaxial strain to an engineered vascular wall model. Type I collagen hydrogels populated with rat aortic smooth muscle cells (RASMCs) were created either as a compacting disk or constrained hemisphere. Both models were adhered to silicone membranes precoated with collagen I, fibronectin, or Cell-Tak and assayed for adhesion characteristics. The best performing model was then exposed to 48 h of 10% strain at 1 Hz to simulate wall strain profiles found in vascular aneurysms, with static cultures serving as controls. The finite strain profile at the level of the membrane and the free surface of the construct was quantified using microbeads. The results indicate that the hemisphere model adhered with Cell-Tak had the most stable adhesion, followed by fibronectin and collagen I. Disk models did not adhere well under any coating condition. Uniform strain propagation was possible up to a maximum area strain of 20% with this system. RASMC responded to 10% equibiaxial strain by becoming less elongated, and immunohistochemistry suggested that stretched RASMC shifted to a more synthetic phenotype in comparison to static controls. These results suggest that equibiaxial strain may induce smooth muscle cell differentiation. We conclude that this system is effective in stimulating cells with cyclic equibiaxial strain in 3D cultures, and can be applied to a variety of biomaterial and tissue engineering applications.

Keywords
Soft tissue biomechanics; Adhesion; Tissue engineering; Bioreactor
First Page Preview
Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 30, October 2006, Pages 5252–5258
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us