fulltext.study @t Gmail

Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
11299 730 2006 9 PDF Available
Title
Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds
Abstract

Dextran hydrogels have been previously investigated as drug delivery vehicles and more recently as macroporous scaffolds; however, the non-cell-adhesive nature of dextran has limited its utility for tissue engineering. To overcome this limitation, macroporous scaffolds of methacrylated dextran (Dex-MA) copolymerized with aminoethyl methacrylate (AEMA) were synthesized, thereby introducing primary amine groups for covalent immobilization of extracellular-matrix-derived peptides. The amino group density for hydrogels copolymerized with 0.5 wt% AEMA was found to be 36.1±0.4 μmol/cm3 by elemental analysis. To further enhance cellular interaction, poly(Dex-MA-co-AEMA) hydrogels were modified with either CRGDS or a mixture of CDPGYIGSR and CQAASIKVAV (1:1, v/v) using sulfo-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC). The immobilized peptide concentration was determined using amino acid analysis at: 2.6±0.9 μmol/cm3 for CRGDS-derived hydrogels and 2.2±0.3 μmol/cm3 plus 1.9±0.2 μmol/cm3 for CDPGYIGSR plus CQAASIKVAV-derived hydrogels, respectively. Cellular interactions of primary embryonic chick dorsal root ganglia (DRGs) were compared on the hydrogels. Cell adhesion and neurite outgrowth on poly(Dex-MA) increased with copolymerization of AEMA and further improved with peptide modification and significantly for CDPGYIGSR/CQAASIKVAV-derived poly(Dex-MA-co-AEMA) hydrogels. Moreover, DRGs penetrated within the first 600 μm of the scaffolds, thereby demonstrating the potential of this scaffold for guided cell and axonal regeneration in vivo.

Keywords
Dextran; Cell adhesion; Macroporous structure; Nerve tissue engineering
First Page Preview
Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 30, October 2006, Pages 5277–5285
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us