fulltext.study @t Gmail

Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface

Paper ID Volume ID Publish Year Pages File Format Full-Text
1132 76 2009 9 PDF Available
Title
Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface
Abstract

The titanium dioxide (TiO2) nanotube surface enables significantly accelerated osteoblast adhesion and exhibits strong bonding with bone. We prepared various sizes (30–100 nm diameter) of titanium dioxide (TiO2) nanotubes on titanium substrates by anodization and investigated the osteoblast cellular behavior in response to these different nanotube sizes. The unique and striking result of this study is that a change in osteoblast behavior is obtained in a relatively narrow range of nanotube dimensions, with small diameter (∼30 nm) nanotubes promoting the highest degree of osteoblast adhesion, while larger diameter (70–100 nm) nanotubes elicit a lower population of cells with extremely elongated cellular morphology and much higher alkaline phosphatase levels. Increased elongation of nuclei was also observed with larger diameter nanotubes. By controlling the nanotopography, large diameter nanotubes, in the ∼100 nm regime, induced extremely elongated cellular shapes, with an aspect ratio of 11:1, which resulted in substantially enhanced up-regulation of alkaline phosphatase activity, suggesting greater bone-forming ability than nanotubes with smaller diameters. Such nanotube structures, already being a strongly osseointegrating implant material, offer encouraging implications for the development and optimization of novel orthopedics-related treatments with precise control toward desired cell and bone growth behavior.

Keywords
TiO2 nanotubes; Osteoblast; Cell adhesion; Cell elongation; Alkaline phosphatase activity
First Page Preview
Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 8, October 2009, Pages 3215–3223
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us