fulltext.study @t Gmail

High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation

Paper ID Volume ID Publish Year Pages File Format Full-Text
11323 731 2006 10 PDF Available
Title
High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation
Abstract

Chitosan is a biodegradable natural polysaccharide that has shown potential for gene delivery, although the ideal molecular weight (MW) and degree of deacetylation (DDA) for this application have not been elucidated. To examine the influence of these parameters on gene transfer, we produced chitosans with different DDAs (98%, 92%, 80% and 72%) and depolymerized them with nitrous acid to obtain different MWs (150, 80, 40 and 10 kDa). We produced 64 formulations of chitosan/pDNA complexes (16 chitosans, 2 amine-to-phosphate (N:P) ratios of 5:1 and 10:1 and 2 transfection media pH of 6.5 and 7.1), characterized them for size and surface charge, and tested them for gene transfection in HEK 293 cells in vitro. Several formulations produced high levels of transgene expression while two conditions, 92–10–5 and 80–10–10 [DDA–MW–N:P ratio] at pH 6.5, showed equivalence to our best positive control. The results also revealed an important coupling between DDA and MW of chitosan in determining transgene expression. Maximum expression was obtained with a certain combination of DDA and MW that depended on N:P ratio and the pH, but similar expression levels could be achieved by simultaneously lowering MW and increasing DDA or lowering DDA and increasing MW, suggesting a predominant role of particle stability, through co-operative electrostatic binding, in determining transfection efficiency.

Keywords
Gene delivery; Chitosan; Transfection; Plasmid DNA; Nanotechnology
First Page Preview
High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 27, September 2006, Pages 4815–4824
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us