fulltext.study @t Gmail

Titanium implants alter endothelial function and vasoconstriction via a protein kinase C-regulated pathway

Paper ID Volume ID Publish Year Pages File Format Full-Text
1137 76 2009 7 PDF Available
Title
Titanium implants alter endothelial function and vasoconstriction via a protein kinase C-regulated pathway
Abstract

The application of titanium (Ti) alloy in joint prostheses is a good choice in orthopedic reconstruction. An elevated serum concentration of Ti has been shown in the patients with loosened knee prostheses. The precise actions of elevated Ti on the circulation remain unclear. In this study the maximal contractile responses elicited by phenylephrine in the aortas of rats 4 weeks after Ti alloy implantation and in cultured rat aortas treated with a soluble form of Ti for a period of 18 h were significantly decreased as compared with controls. Aortas isolated from rats with Ti alloy implants or aortas treated with a soluble form of Ti had enhanced protein expression of endothelial nitric oxide synthase (eNOS) and protein kinase C (PKC)-α and enhanced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Treatment of human umbilical vein endothelial cells (HUVECs) with a soluble form of Ti for 24 h dose-dependently increased eNOS protein expression. Short-term treatment of HUVECs with Ti for 1 h effectively enhanced the phosphorylation of eNOS, PKC (pan) and ERK1/2. PKC inhibitors RO320432 and chelerythrine effectively inhibited Ti-enhanced phosphorylation of eNOS and PKC (pan). These results indicate that Ti in the circulation may alter endothelial function and reduce vasoconstriction.

Keywords
Titanium alloy implants; eNOS; Aorta; Endothelial cells
First Page Preview
Titanium implants alter endothelial function and vasoconstriction via a protein kinase C-regulated pathway
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 8, October 2009, Pages 3258–3264
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us