fulltext.study @t Gmail

A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads

Paper ID Volume ID Publish Year Pages File Format Full-Text
11413 737 2006 8 PDF Available
Title
A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads
Abstract

A hypothetical regulation mechanism for bone modeling and remodeling under electromagnetic field is proposed. In this hypothesis, the bone modeling and remodeling mechanism is described as follows: the circular loads that we bear during ordinary daily activities generate micro-damage in cortical bone and these micro-cracks are removed by osteoclasts. Then growth factors, which are in latent forms in osteocytes, are activated by osteoclasts and released into bone fluid. These growth factors stimulate osteoblasts to refill the cavities. An electromagnetic field can stimulate the multiplication of growth factors and accelerate the bone remodeling process indirectly. It can be seen that many features reported in adaptive bone modeling and remodeling are explained by the proposed hypothesis. Further, a computational model is established based on the hypothesis, which can simulate the bone modeling and remodeling process under multi-field loads.

Keywords
Bone modeling and remodeling; Electromagnetic field; Biomaterial; Biomechanics
First Page Preview
A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 21, July 2006, Pages 4050–4057
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us