fulltext.study @t Gmail

The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion

Paper ID Volume ID Publish Year Pages File Format Full-Text
11457 742 2007 9 PDF Available
Title
The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion
Abstract

This contribution demonstrates a simple and reproducible method for fabricating surface-tethered polymer brushes that vary in grafting density and layer thickness for peptide adsorption and cell-adhesion studies. Surface-initiated atom transfer radical polymerization was used together with thiol self-assembly to generate these nanothin polymer brush layers of poly((polyethylene glycol) methacrylate). A kinetic study was done to measure the layer thickness growth rate at room temperature from flat gold substrates presenting different polymerization initiator molecule surface densities. The polymer brush layers transition from mushroom to brush regimes with increasing grafting density. A crossover density of 0.038±0.005 chains/nm2 was determined for the PPEGMA polymer brushes. The results described in this paper show that layer properties such as wettability and dry layer thickness depend strongly on initiator surface density. Ultimately, the adsorbed concentration of an RGD-containing synthetic peptide Gly–Arg–Gly–Asp–Ser and the adhesion and spreading of cells were correlated with surface properties, which continues to be a major research theme in biomedical and biomaterials research.

Keywords
Cell adhesion; Protein adsorption; RGD peptide; Surface analysis; Surface grafting
First Page Preview
The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 5, February 2007, Pages 763–771
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us